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Abstract

In this paper we develop a new geometric approach to subtractive continued fraction
algorithms in high dimensions. We adapt a version of Farey summation to the geometric
techniques proposed by F. Klein in 1895. More specifically we introduce Farey polyhedra
and their sails that generalise respectively Klein polyhedra and their sails, and show similar
duality properties of the Farey sail integer invariants. The construction of Farey sails is based
on the multidimensional generalisation of the Farey tessellation provided by a modification
of the continued fraction algorithm introduced by R. W. J. Meester. We classify Farey
polyhedra in the combinatorial terms of prismatic diagrams. Prismatic diagrams extend
boat polygons introduced by S. Morier-Genoud and V. Ovsienko in the two-dimensional
case. As one of the applications of the new theory we get a multidimensional version of
Conway-Coxeter frieze patterns. We show that multidimensional frieze patterns satisfy
generalised Ptolemy relations.
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1 Introduction

This paper is dedicated to the study of multidimensional continued fractions for subtractive
algorithms based on integer invariants of their sails. (Sails are polyhedral surfaces associated to
continued fractions.) We introduce Farey polyhedra, generalisations of Klein polyhedra in two
dimensions, and study their properties and combinatorics. Finally we define a notion of higher
dimensional frieze patterns, analogous to Conway-Coxeter frieze patterns.

This section is organised as follows. We start with a brief introduction to the subject areas in
Subsection 1.1. We discuss our main contributions and provide an overview of the organisation
of the paper in Subsection 1.2.

1.1 History and background

Multidimensional continued fractions. The question on generalisation of continued fractions
to the multidimensional case was raised for the first time in 1868 by C. G. J. Jacobi (see [20]).
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One of the first generalisations of continued fractions was proposed by F. Klein [29, 30] in 1895.
F. Klein considered the cones in three-dimensional space; he introduced polyhedral surfaces that
are now called sails (the boundaries of the convex hulls of all integer points inside the cone).
Nearly 30 years ago V. I. Arnold initiated a detailed study of the geometric and combinatoric
structures of Klein’s polyhedra (see e.g. in [1, 2]]). His suggestion was to examine the geometry
and combinatorics of continued fractions via integer lattice invariants such as integer congruence
classes of the faces of the sails, their quantities and frequencies, integer angles between the faces,
integer distances, volumes, and so on.

H. Tsuchihashi [49] found the connection between periodic multidimensional continued frac-
tions and multidimensional cusp singularities. J.-O. Moussafir in [41] and O. German in [15]
studied the relationship between the sails of multidimensional continued fractions and Hilbert
bases. Statistical properties of sails were studied by M. L. Kontsevich and Yu. M. Suhov in [31].
Multidimensional continued fractions appear in rigidity theory [27] and toric geometry [38]. Some
examples of the periodic multidimensional sails were calculated in the papers [32, 33] by E. Ko-
rkina, [35] by G. Lachaud, [10, 43] by A. D. Bruno and V. I. Parusnikov, and the first author [25,
26] (see also [8, 22]). For the classical theory of regular continued fractions we refer to [28].

Another famous generalisation of continued fractions was proposed in [44, 45] by O. Perron
in 1907. O. Perron invented an algorithm that produces approximations of a fixed direction
(similarly to the continued fraction algorithm). Later his algorithm was referred to as the Jacobi-
Perron algorithm. The Jacobi-Perron algorithm was further modified to numerous subtractive
algorithms. Here we would like to mention the ordered Jacobi–Perron algorithm (OJPA) [18,
46], Brun’s algorithm [6, 9], and the fully subtractive algorithm by F. Schweiger [47].

Technically speaking, Klein’s approach to Jacobi’s question works with cones rather then
with a single direction, distinct from all subtractive algorithms. For this reason there is no
straightforward matching between their properties. It is worth mentioning that in the classical
two-dimensional case both Klein’s and Perron’s theories provide the same continued fractions.

Hermite’s problem. For the last 100 years subtractive algorithms and Klein’s polyhedra
were competing techniques to approach various mathematical problems. Let us consider one
of such problems. Hermite’s problem of 1848 asks to find a comprehensive description of cubic
irrationalities (i.e. the roots of cubic irreducible polynomials over Q with integer coefficients)
in terms of some eventually periodic sequences. The answer to this question would generalise
Lagrange’s theorem on the periodicity of regular continued fractions for quadratic irrationalities.

Klein polyhedra are doubly-periodic for triples of conjugate vectors, however the constructive
combinatorial description of such periods is not yet known. V. I. Arnold formulated several
famous open problems on the quotient tori decompositions of fundamental domains that lead
to the generalisation of the Lagrange’s theorem on classical periodicity to the multidimensional
case (see, e.g., in [22]). Partial results in this directions where obtained in papers [16, 35].

Contrary to the situation for Klein polyhedra, the description of periods for subtractive
algorithms is simple, as it is conjectured that most of the subtractive algorithms are not nec-
essarily periodic for cubic vectors. (For further discussions see, e.g. Jacobi’s last theorem for
the Jacobi-Perron algorithm in Section 27.4 of [22].) It is only recently that the first periodic
subtractive algorithms were constructed [23, 24]. It is remarkable that the periodicity proof of
the sin2-algorithm of [23] (the only subtractive algorithm which is proven to be periodic for cubic
irrationalities) substantially involves the periodicity of Klein polyhedra.

Geometry of subtractive algorithms. The first steps in studying the geometry of subtractive
algorithms were done in 2001 when T. Garrity introduced triangle sequences [14]. Together with
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his coauthors he proved several dynamical results and a criterion on convergence in [3]. In
another paper [5] he studied the Farey partition and generalises the Minkovskii ?-function for it.
Later in 2008 G. Panti considered another triangle map in [42].

We aim to develop new techniques of Klein polyhedra adjusted to subtractive algorithms. We
pick one particular subtractive algorithm that suits our purposes the best: the Farey summation
algorithm, corresponding to the Farey partition introduced [5]. This algorithm is based on the
most straightforward generalisation of Farey summation to the higher dimensional cases.

This algorithm has remarkable properties. It admits a natural generalisation of the nose
stretching algorithm (see [1] for the classical nose stretching algorithm) and a remarkable con-
vergence set (studied in detail in [34]). Note that the dual to the Farey summation algorithm
is the Meester algorithm introduced in 1989 by R. W. J Meester in [36]. Namely the Meester
algorithm acts as the Gauss map for the Farey summation algorithm. As follows from the main
theorem of [34] (on Meester algorithm), the infinite sequences of cones produced by the Farey
summation algorithm do not converge to a single ray almost everywhere. As one of the con-
sequences we get that Jacobi’s last theorem does not hold for the Farey summation algorithm
(there are cubic irrationalities with non-periodic continued fractions).

Informally speaking the Farey summation algorithm is the simplest algorithm from the ge-
ometric perspective. This is partially due to its rigid version of nose stretching algorithm, see
Subsection 2.5.2 below. Note that the proposed geometric techniques can be generalised for other
subtractive algorithms. All but a few of the properties will have straightforward generalisations.

Frieze patterns and triangulated polygons. In the classical two-dimensional case frieze
patterns are tables of numbers introduced by H. Coxeter [13] and studied together with J. Conway
in [12]. In the latter paper a correspondence between frieze patterns and triangulations of convex
polygons was found, which in turn has provided a connection with the more recent study of cluster
algebras (see, e.g. in [4, 39]).

The correspondence may be understood in the following two ways. First, counting the number
of triangles incident to each vertex in a triangulation provides a sequence that uniquely defines the
frieze pattern up to cyclic permutations of the elements in the sequence. Second, by embedding
the polygon triangulation to the Farey complex in the hyperbolic plane, one associates rational
numbers to the vertices of the original polygon. There exists an elegant formula connecting
rational numbers at pairs of vertices to each element of the frieze pattern corresponding to the
triangulation, see the paper [48] by I. Short for more details. Frieze patterns can be thought of
as encoding the combinatorics of triangulated polygons.

In this paper we introduce prismatic diagrams that serve as an important combinatorial
invariant of Farey polyhedra. We use the combinatorics of prismatic diagrams to define three-
dimensional frieze patterns where each element is associated to a pair of vertices on the prismatic
diagram. Similar to the two-dimensional case, three-dimensional frieze patterns admit a version
of the Ptolemy relation for pairs of faces in a prismatic diagram.

1.2 Main results

In this paper we generalise Klein polyhedra and their sails to higher dimensional cases and study
their properties. In particular we introduce frieze patterns in higher dimensions.

Definition of Farey polyhedra. Our generalisation of Klein polyhedra is provided by the
following four basic algorithmic definitions:

• Algorithm 2.8: first we generate a tessellation of Z2 that is equivalent to the tessellation
of the hyperbolic plane by the Farey graph;
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• Algorithm 2.18: for a ray emanating from the origin we consider the union of simplices
intersecting the ray. This is the Farey polyhedron, the central object of study, and was first
studied by T. Garrity in [14];

• Algorithm 2.32: the Meester algorithm, introduced by R. W. J Meester in [36], is the
subtractive algorithm that defines continued fractions for the Farey polyhedron;

• Algorithm 2.42: finally the nose stretching algorithm provides a reconstruction of the
Farey polyhedron from the continued fraction.

Combinatorics of Farey polyhedra, prismatic diagrams, and sails. We introduce a
combinatorial description of the boundaries of Farey polyhedra using prismatic diagrams, spe-
cial polytopes with fixed triangulations. Prismatic diagrams are complete invariants of Farey
polyhedra (see Theorem 3.27). They generalise the combinatorial description of triangulated
polygons given by Farey boats, introduced by S. Morier-Genoud and V. Ovsienko in [40]. Pris-
matic diagrams allow us to generalise several important notions of the geometry of continued
fractions to the multidimensional case: sails and LLS sequences, whose elements encode the
elements of the Farey summation continued fractions (see Definition 3.40 and Theorem 3.57).
Prismatic diagrams and their LLS-sequences are suitable tools with which to study geometric
aspects of the Farey summation algorithm.

Generalised frieze patterns. In 1973 J. Conway and H. S. M. Coxeter discovered a one-to-one
correspondence between triangulated polygons and frieze patterns, where each pair of vertices
corresponds to a unique frieze element. The defining relation of frieze patterns is then interpreted
as a Ptolemy relation on the edges of the corresponding triangulated polygon.

A natural question to ask is as follows: is there an analogous frieze-like Ptolemy relation for
faces of the Farey polyhedron, described by invariants of the prismatic diagram? We answer this
question in the affirmative in Theorem 3.80. We use newly defined three-dimensional continuants
to find λ-lengths, values assigned to pairs of vertices of Farey polyhedra. We show that the 3× 3
matrix of λ-lengths defined by pairs of faces of the Farey polyhedron have determinant 1.

Organisation of the paper. We start in Section 2 with the discussion of Farey tessellation
and the construction of the Farey polyhedra, the central objects of study in this paper.

We recall some basic notions of integer geometry in Subsection 2.1 before defining the Farey
tessellation in the integer setting in Subsection 2.2. Farey polyhedra are defined by the Farey
summation algorithm, described in Subsection 2.3. Here we also introduce important terminology
used throughout the paper. A multidimensional continued fraction is then defined from the Farey
summation algorithm in Subsection 2.4.

In Subsection 2.5 we recall the algorithm of R. W. J Meester and note its equivalence to the
continued fraction defined by the Farey summation algorithm. Finally we recall the situation of
convergence of the Meester algorithm in Subsection 2.6, and relate these known results to the
Farey summation algorithm.

In Section 3 we study the properties of Farey polyhedra. We introduce important invariants
of the polyhedra, including the combinatoric prismatic diagrams.

We start with Subsection 3.1 in which we discuss the basic properties of the Farey tessellation.
Prismatic diagrams are defined in Subsection 3.2.

We define generalisations of the important integer invariants, sails and LLS-sequences, from
prismatic diagrams in Subsection 3.3.
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We study the matrix decomposition of the Farey summation algorithm in Subsection 3.4. This
is a prerequisite for the study of LLS sequences in Subsection 3.5. The matrix decomposition
admits a natural generalisation of the notion of continuants. We discuss this in Subsection 3.6.

In Subsection 3.5 we describe the Ptolemy relation for Farey polyhedra, and introduce three-
dimensional frieze patterns.

Finally in Section 4 we mention some open questions in the area.

2 Farey tessellation and related algorithms

We start this section with a short discussion on integer geometry, which forms the basis of much
of the paper, followed by a description of the Farey tessellation. Then we define the Farey
summation and the Meester algorithms which are closely linked together, and they are both
related to the geometric continued fraction that we study. We close the section with some short
words on the convergence of these algorithms.

2.1 A few words on integer geometry

Let us fix some integer n ≥ 2. A point is said to be integer if its coordinates are integer. All
integer points form the lattice of integer points Zn. A vector, segment, polygon, or polytope are
integer if all their vertices are integer.

We say that an affine transformation is integer if it preserves the lattice of integer points.
The set of affine transformation is denoted by Aff(n,Z). Any integer affine transformation is a
composition of a GL(n,Z) matrix multiplication and a shift on an integer vector.

Definition 2.1. Two sets S1 and S2 are integer congruent if there is an integer affine transfor-
mation providing a bijection between S1 and S2.

Definition 2.2. Integer length of an integer segment is the number of integer points in the
interior if this segment plus one. The integer distance between two integer points is the integer
length of the segment connecting them.

Definition 2.3. Integer volume of a tetrahedron generated by linear independent integer vectors
V = (vi)

k
i=1 is the index of the sublattice generated by V in integer lattice of the plane spanning

V . Denote it by lV(V ).

In order to avoid repeating the fact that our coordinates are relatively prime, we introduce
the notion of a unit integer circle.

Definition 2.4. The unit integer sphere ZSn−1 ⊂ Zn centred at the origin is the set of all points
whose integer distance to the origin equals 1.

2.2 Farey tessellation in higher dimensions

Let us describe the Farey tessellation, recalling first the familiar two-dimensional case.

2.2.1 Construction of the Farey tessellation

Consider two rational numbers p/q and r/s defined by the two pairs of relatively prime numbers
(p, q) and (r, s). The Farey sum of these two numbers is defined as follows:

p

q
⊕ r

s
=

p+ r

q + s
.
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Let us first projectivise this summation (this will enable us to have ∞ = (1 : 0)):

(p : q)⊕ (r : s) = (p+ q : r + s).

In lattice geometry there is a natural selection of (p : q) for a projective point (up to the choice
of the sum). Namely we associate a projective point (p : q) to a collinear point on the integer
unit circle ZS1. In most of the paper we work with non-negative coordinates, so the point of
ZS1 is actually uniquely defined. For non-negative rational pairs of the unit circle we have the
Farey summation as well:

(p, q)⊕ (r, s) = (p+ q, r + s).

It is interesting to note that such Farey summation in ZSn−1 simply coincides with the integer
vector summation.

Let us generalise Farey addition to the multi-dimensional case as a vector addition; its pro-
jection to the plane xn = 1 or alternatively to the plane x1 + · · · + xn = 1 will be different
versions of rational Farey additions (see, e.g. in [5]).

Definition 2.5. Let U1(u1, . . . , un) and V2(v1, . . . , vn) be two arbitrary points in Zn. Then their
Farey sum is defined as

A1 ⊕A2 = (u1 + v1, . . . , un + vn).

Now we are ready to give the major building block of the multidimensional Farey tessellation
that we describe later in Algorithm 2.8.

Definition 2.6. Let V1 . . . Vk be a simplex in ZSn. We say that its Farey pyramid is the simplex
WV1 . . . Vk, where W = V1 ⊕ · · · ⊕ Vk, k ≤ n. Here W is the vertex of the pyramid and V1 . . . Vk

is its base.
We say that a face of the Farey pyramid is side/base if it contains/does not contain W .
In the degenerate case k = 1 the vertex W coincides with the base V1. In this case we say that
such pyramid does not have side faces.

Remark 2.7. Side faces of the Farey pyramid can have any dimension from 0 to k − 1.

Technically we do not require W to be in ZSn−1, however in the below construction it will
be always the case.

Algorithm 2.8 (Farey tessellation). Consider the non-negative orthant, and let OEi be its
coordinate vectors for i = 1, . . . , n.

Base of construction: Consider the set S of all faces (of all possible dimensions) of the (n − 1)-
dimensional tetrahedron E1 . . . En.

Step of construction: Let S be the set of faces from the previous step. At this step for every
face in S we add all side faces of its Farey pyramid.

We iterate the step of construction finite or infinitely many times.

• the Farey pyramids of the resulting set S are said to be Farey tessellation simplices;

• the decomposition of the positive orthant into Farey tessellation simplices tetrahedra is
said to be Farey tessellation of the positive orthant. (For completeness, we add the basis
tetrahedron to the tessellation.)
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Remark 2.9. The central projection of all edges of the Farey tessellation to the plane xn = 1,
namely

(x1, . . . , xn) →
(x1

xn
, . . . ,

xn−1

xn

)
,

provides a triangulation of the basis simplex given by triangle sequences of [5]. This triangulation
is known as the Farey partition of the simplex.

Let us mention the following quantitative properties of the Farey tessellation.

Proposition 2.10. The following holds:

• The integer volume of a Farey simplex of dimension k equals k−1 (with the only exception
for the basis one with integer volume equals 1);

• The pyramid with the vertex at the origin and the base in a face of any Farey simplex has
a unit integer volume.

Proof. Consider a Farey tessellation simplex V1 . . . Vk. Both statements follow from the fact
that in the integer basis of the vertices of the coordinates OV1, . . . , OVk, the new added point
W = AV1⊕· · ·⊕Vk = (1, . . . , 1, 0, . . . , 0) (here the first k coordinates equal 1). Hence all the Farey
tetrahedra are integer congruent and have the integer volume equals k−1; and the pyramids for
all the faces of the tetrahedron are of unit volume.

2.2.2 Farey and quasi-Farey nets

Recall the following general definition.

Definition 2.11. We say that an integer tetrahedron of dimension n in Zn is unimodular if the
vectors of its edges generate the lattice Zn.

Consider a tessellation T of the positive orthant. Let us centrally project it to the coordinate
triangle of the plane xn = 1. The image of the edges of the tessellation is called the net of this
tessellation.

Definition 2.12. A net is said to be Farey if all the tetrahedra in the original tessellation are
unimodular.

Note that Farey nets were introduced by A. Hurwitz in [19] and further developed by D.J. Gra-
biner in [17].

In what follows we consider a slightly extended notion of Farey nets.

We say that a convex polytope with integer vertices is empty if it does not contain integer
points distinct to its vertices (both in the interior and at the boundary).

Definition 2.13. A net is said to be quasi-Farey if all the tetrahedra in the original tessellation
are empty.

Remark 2.14. In the two-dimensional case all empty triangles are integer congruent to the co-
ordinate one. However in higher dimensions there are infinitely many different types of empty
tetrahedra that are integer non-congruent to each other. All empty tetrahedra of dimension
three have been classified by G.K. White in [51]. The complete description of empty tetrahedra
in dimension greater than 3 is not known.

Proposition 2.15. The Farey tessellation of the coordinate cone generates a quasi-Farey net.
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Proof. Consider any Farey tetrahedron T . By Proposition 2.10, the volumes of the pyramids
with centre at the origin and bases at faces of T equal 1. Therefore, they are all empty, and
hence T is empty as well.

Remark 2.16. The quasi-Farey net of the Farey summation algorithm was studied by O.R. Beaver
and T. Garrity in [5] in dimension 3. The corresponding continued fraction map on the net is
called the Triangle map.

Remark 2.17. Later in Proposition 3.1 we show that the closure of the union of all the Farey
simplices is the whole non-negative orthant and that two Farey tetrahedra do not intersect.

2.3 Description of the Farey summation algorithm

Let us describe a natural continued fraction algorithm generated by the Farey tessellation.

Algorithm 2.18 (Farey summation algorithm). The Farey summation algorithm is the algo-
rithm that produces a (finite or infinite) sequence of simplices Ti for a given vector v ∈ Rn

+.

Base of the algorithm: Let S0 be the basis simplex OE1 . . . En. We formally set the simplex
E1 . . . En to be the deck (zero yard) T0 of the algorithm. Here a yard is an n − 1 dimension
simplex through which v passes.

Step i of the algorithm: In the previous step we have constructed the (i−1)-th yard Ti−1. Denote
by Si the Farey pyramid with base Ti−1, we call it the i-th Farey pyramid of the Farey summation
algorithm. Let us show how to construct the i-th yard Ti. Note that the ray in the direction
of v intersects exactly one side face of Si of any dimension in its interior (here interiors of
zero-dimensional faces is the vertex itself). We set Ti to be this face.

Termination of the algorithm: In case the next chosen simplex is a single vertex, the algorithm
naturally terminates. Otherwise, the algorithm produces the infinite sequence of yards.

The last yard is called the (crow’s) nest ; the last vertex is called the pennant.

Definition 2.19. The union of the Farey pyramids formed by the algorithm is called the Farey
polyhedron.

Note that we have natural induced notions of the deck, the nest, the pennant, and the yards
for the Farey polyhedron.

Definition 2.20. We say that the i-th yard (i ≥ 1) of a Farey polyhedron is principal if either
the dimension drops at Step i+1 or if the index of the basis vector that we change at Step i+1
is different to the index of the basis vector at Step i. The deck and the nest are considered to
be principal by default.

Let us formulate the following important properties of Farey pyramids.

Proposition 2.21. Two consecutive principal yards of a Farey polyhedron share a face of codi-
mension 1 (with respect to the yard).

The convex hull of two consecutive principal yards is a simplex; it coincides with the union of
the Farey pyramids between them.

As we will see later, while defining continued fractions we group consecutive Farey pyramids
of the Farey summation algorithm together as follows.

Definition 2.22. The convex hull of two consecutive principal yards is said to be a division
simplex for the Farey polyhedron (division tetrahedron in three-dimension).
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Figure 1: Farey summation algorithm for (5, 7, 8) (left) and its central projection to the plane
x+ y + z = 1.

Remark 2.23. Let Tk and Tl (k < l) be two yards for some vector v. Then the dimension of Tl

does not exceed the dimension of Tk. (The same for Sk and Sl.)

Remark 2.24. Historically a multidimensional continued fraction algorithm is called Farey if its
net is Farey. However, while the multidimensional Farey tessellation of the Farey summation
algorithm provides the most straightforward generalisation of the Farey tessellation of the plane,
its corresponding projection is a quasi-Farey net (and not a Farey may). For this reason the Farey
summation algorithm is not really a Farey algorithm (however it provides the direct generalisation
of the Farey addition).

Remark 2.25. The nautical terminology is motivated by two previous unrelated definitions: the
sails first studied by F. Klein and so named by V. I. Arnold, and Farey boats introduced by
S. Morier-Genoud and V. Ovsienko, which we study further in Subsection 3.2.

Example 2.26. In Figure 1 we show the Farey summation algorithm for the vector (5, 7, 8).

• Base: We start with the basis tetrahedron S0 = OA0B0C0 and set T0 = A0B0C0.

• Step 1: We construct the Farey pyramid S1 = A0B0C0A1 withA1 = A0⊕B0⊕C0 = (1, 1, 1).
The vector v intersects the side A1B0C0 (seen clearly from the right picture). Hence
T1 = A1B0C0.

• Step 2: The next Farey pyramid is A1B0C0B1 with B1 = A1 ⊕B0 ⊕ C0 = (1, 2, 2). Hence
T2 = A1B1C0.

• Step 3: S3 = A1B1C0c with c = (2, 3, 4);
T3 = A1B1c.
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• Step 4: S4 = A1B1cC1 with C1 = (4, 6, 7);
T4 = A1C1. Note that here the yard is one-dimensional.

• Step 5: S5 = A1C1v. Since T4 is one-dimensional, S5 is two-dimensional. Here we arrive
to the final vector v = A1 ⊕ C1 = (5, 7, 8).
The algorithm terminates here.

In our notation all the yards Ti except for i = 3 are principal; T0 is a deck; T4 is a nest; and
the last vector v is a pennant.

In Figure 1 (Left) we show all the Farey simplices for (5, 7, 8) in the space; in Figure 1 (Right)
we show the central projection all the Farey simplices to the plane x+ y+ z = 1. As we will see
later the point v can be labeled either as A2 or C2.

2.4 Definition of Farey summation continued fractions

We describe an algorithm for Farey summation continued fractions, based on the Farey summa-
tion algorithm. For simplicity we work essentially in the three-dimensional case.

2.4.1 Enumeration of vertices

Let us first enumerate all the vertices in all side triangles used in the algorithm. Our base
external triangle is V0,1 = (1, 0, 0), V0,2 = (0, 1, 0), V0,3 = (0, 0, 1).

Assume that the vertices for the external simplex in Step i are already enumerated, say Vi,1,
Vi,2, and Vi,3. Let us enumerate the vertices of the external simplex in Step i+1 in the following
way: in this step there is only one vertex that is replaced by a new one; set the index of the new
vertex to be the same as the replaced vertex (while the indices of the unchanged vectors stay
the same). For instance, if Vi,2 is replaced then we label Vi+1,1 = Vi,1; Vi+1,2 = Vi,1 + Vi,2 + Vi,3;
Vi+1,3 = Vi,3.

2.4.2 Tabulation of the algorithm

In the three-dimensional case the algorithm splits into two stages.

Stage 1. Step i is in this stage if the i-th yard is two-dimensional. Define ri ∈ {1, 2, 3} to be the
index of the vertex that is changing.

Let us write the sequence of ri generated in this stage in the following form:

1a12a23a31a4 . . . ,

where aj are the multiplicities of the consequent indices. Note that some ai may be zero, however
we require no two zeroes in a row except when passing to Stage 2 (ak−1 and ak), and at the
beginning (a1 and a2).

Stage 2. Step k+ i is in this stage the k+ i-th yard is one-dimensional. Here we change only the
vertices with indices s, t ∈ {1, 2, 3} such that s ≡ k and t ≡ k + 1 modulo 3.

Again we can abbreviate the sequence of changed indices as:

sb1tb2sb3tb4 . . .

(note that ak, ak−1, and b1 may necessarily be zeroes while passing from Stage 1 to Stage 2).

Remark 2.27. The proposed tabulation is very similar to LR-notation in the Farey graphs (see
e.g. in [22] for more details).
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Finally we join both of the sequences (ai) and (bj) together to form a single sequence.

Definition 2.28. Consider a vector v with positive coordinates. Let it generate the sequences
(ai) and (bj) described above. The sequence

[a1; a2 : · · · : ak | b1 : · · · : bl]

is said to be the Farey summation continued fraction for a vector v. In case the sequences (ai)
or (bi) are infinite we write

[a1; a2 : · · · |] and [a1; a2 : · · · : ak | b1 : · · · ]

respectively.

Remark 2.29. By construction all finite and infinite sequences (ai) and (bj) of non-negative
elements are realised as Farey summation continued fractions for some vector v with the following
list of exceptions:

• There are no two consecutive zeroes in (ai) except for:

— a1 = a2 = 0 and a3 ̸= 0;

— ak−1 = ak = 0, ak−2 ̸= 0, and (bj) contains at least one positive element;

• If (bj) is empty, then ak ̸= 0.

• All bi are positive with the only exception that b1 can be 0 in the case l ≥ 2.

Example 2.30. Consider a vector v = (5, 7, 8). In Example 2.26 we have discussed the Farey
summation algorithm for v. Now we can write the Farey summation continued fraction for it:

[1; 1 : 2 : 0 : 0 | 1].

Note that we add two zeroes since our pair (s=3, t=1) follows after (s=1, t=2) and (s=2, t=3)
that we skip.
Note also that the sum of all elements is 5, which is equal to the number of steps (Farey pyramids)
in the Farey summation algorithm.

2.5 Meester algorithm

Our next goal is to describe the Meester algorithm which is a Jacobi-Peron type subtractive
algorithm. Meester algorithm plays the same role for the Farey summation continued fractions
as the Euclidean algorithm plays for the continued fractions algorithm. In this subsection we
work in an arbitrary dimension.

2.5.1 A general definition

Let us begin with a small remark.

Remark 2.31. In the Meester algorithm below we fix the order of basis vectors. A different or-
dering of basis vectors will lead to slightly different continued fractions but the same tessellation.

Algorithm 2.32 (Meester algorithm). We start with an n-tuple of non-negative real numbers
(v1, . . . , vn). While there are no zero coordinates we perform the following iteration steps.

The i-th iteration step is as follows (i = 1, . . .):
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• Let j ∈ {1, . . . , n} satisfy j = i mod n.

• If the j-th coordinate is zero then we go straight to the next step. Otherwise we subtract
the j-th coordinate from all other non-zero coordinates simultaneously as many times as it
is possible for all to remain non-negative: denote the number of times we have subtracted
by ai (note that ai = 0 is possible). Denote also the resulting vector as (v1,i, . . . , vn,i).

• As a result of the previous item we obtain a new n-tuple of non-negative real numbers. We
keep the number ai as the element of the continued fraction.

The algorithm terminates if we have a single non-zero coordinate.

For any j ∈ 1, . . . , n consider the sequence of a single coordinate (vj,i). Denote by sj the
integer for which vj,sj = 0 and vj,sj−1 > 0. If the sequence vj,i is always positive, then we do not
assign any value for sj .
Note: We introduce sj to keep track of the step at which the j-coordinate becomes 0. This is
used later when reconstructing the Farey polyhedron from the continued fraction.

As the output of Meester algorithm we have two items:

• a sequence of non-negative integers (ai);

• a sequence of (sj1 , . . . , sjk) enumerated in the increasing order. Here the number k denotes
the number of sj for which the values are assigned during the algorithm execution (here
k ≤ n− 1).

Finally we write the elements ai in the form of continued fraction.
First, let us assume that the algorithm is finite. Then for the sequence (sjt)

k
t=1 we have

k = n − 1, as after step N we have n − 1 zero coordinates. We also do not indicate the last
sjn−1 as this denotes a change occurring at the terminal step of the algorithm. The following
expression is called the Meester algorithm continued fraction:[

a1; · · · : asj1 |j1 asj1+1 : · · · : asj2 |j2 asj2+1 : · · · : asjn−2
|jn−2 asjn−2+1 : · · · : aN

]
.

In case the algorithm does not terminate, k could be any number of {1, . . . , n − 2}. The
corresponding continued fraction is infinite:[

a1; . . . : asj1 |j1 asj1+1 : · · · : asj2 |j2 asj2+1 : · · · : asjk |jk asjk+1 : asjk+2 : · · ·
]
.

For both finite and infinite continued fractions: after the symbol |js is used we do not include ai,
where i = js mod n, in the continued fraction, since the values of ai are not assigned at these
steps.

Remark 2.33. The Meester algorithm has been previously introduced and studied in [34, 36, 37].

Example 2.34. Consider the example of (55, 10, 67). The Meester algorithm produces

(55, 10, 67)
0,5→ (5, 10, 17)

0,2→ (5, 0, 7)
0,1→ (5, 0, 2)

2→ (1, 0, 2)
2→ (1, 0, 0).

The zeroes denote steps where no subtraction is possible. The sequence of ai here is (0, 5, 0, 2, 0, 1, 2, 2).
Further we have:

• sj1 = 4 and j1 = 2, from the third vector we have the zero second coordinate (underlined);
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• sj2 = 8 and j2 = 3 in the last vector the third coordinate is zero (underlined). For simplicity
we do not show sj2 = 8 in the continued fraction, which stands in the last position (after
which no steps are done).

Therefore, the Farey summation continued fraction for (55, 10, 67) is as follows:

[0; 5 : 0 : 2(asj1=4) |j1=2 0 : 1 : 2 : 2].

Remark 2.35. On the i-th step we get the sequence (a1, . . . , ai) and the vector Vi = (v1,i, . . . , vn,i).
A basis Wi generated by the Farey summation continued fraction [a1; . . . : ai] gives us the i-th
convergent, while Vi is the remainder. In fact the remainder Vi is generated by

[0; . . . : 0|j1 · · · 0|jk · · · 0 : ai+1 : . . . : aN ].

Here the number of initial zeroes coincides with the index on the Step i+1; since the j1, . . . , jk
are all the indices removed before Step i+1.

Example 2.36. For the point (55, 10, 67) with continued fraction [0; 5 : 0 : 2|2 : 0 : 1 : 2 : 2],
the remainder when i = 6 is V6 = (5, 0, 2) = [04; |2 02 : 2 : 2] = [0; |2 2 : 2].

Remark 2.37. Note that the value of the non-zero coordinate in the final step of the algorithm is
the greatest common divisor of the initial coordinates, just as in the classical Euclidean algorithm.

The following proposition links the geometrical nature of Farey summation algorithm and
the number theoretical nature of Meester-algorithm.

Proposition 2.38. Let v be a non-zero point of the positive orthant. Then the Meester algorithm
for v generates the same continued fraction as the Farey summation algorithm.

The only difference in writing is as follows. One should replace

|j 7→ 0 : · · · : 0 : |,

where the number of zeroes, it is the number of cyclic transpositions to exclude the correct
coordinate. In the three-dimensional case it is either 0, 1, or 2.

Example 2.39. For the sequence of Example 2.30 we have

(5, 7, 8) → (5, 2, 3) → (3, 2, 1) → (1, 0, 1) → (1, 0, 0).

The corresponding Meester algorithm continued fractions is

[1; 1 : 2 |2 1] = [1; 1 : 2 : 0 : 0 | 1].

2.5.2 Extended Meester algorithm continued fraction

Recall that for ordinary continued fractions we have the following obvious relation:

[a0; · · · : an] = [a0; · · · : an − 1 : 1]

(here we assume that an > 1). Note that the Euclidean algorithm does not generate [a0; · · · :
an − 1 : 1], however both forms find use in the literature. For example, in integer geometry one
may be interested solely in odd length continued fractions. We consider analogous equivalent
continued fractions for the Farey summation algorithm.
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Definition 2.40. Consider the Meester algorithm continued fraction. Let the Farey addition at
the last step be on k points. Let us replace the last element an of the continued fraction by a
sequence (an−1, 0, . . . , 0, 1), where the number of zeroes does not exceed k − 2. We say that the
obtained sequence is the extended Meester algorithm continued fraction.

Example 2.41. For (5, 7, 8) we have the following two extended Meester algorithm continued
fractions

[1; 1 : 2 |2 1] = [1; 1 : 2 |2 0 : 1].

2.5.3 Reconstruction of Farey simplices for a given continued fraction

Let us show how to reconstruct all the Farey simplices that were used in the Farey summation
algorithm from the Farey summation continued fraction.

Algorithm 2.42 (Nose stretching algorithm). We start with an n-tuple of integer basis vectors
(E1, . . . , En). We are also given a Farey summation continued fraction

α =
[
a1; · · · : asj1 |j1 asj1+1 : · · · : asj2 |j2 asj2+1 : · · · : asjn−2

|jn−2
asjn−2+1

: · · · : aN
]
.

Step of the algorithm. On Step s we get several ordered vectors (V1, . . . , Vn). The step
contains two stages.

Generating vectors for the next step: We start this step with the vector Vj , the first non-zero
vector to the right of Vs mod n. In other words, we skip any zero vectors. Let k be the number
of symbols |i occurring in all previous steps. We denote

V̂ = Vj ⊕ as(V1 ⊕ · · · ⊕ Vj−1 ⊕ Vj+1 ⊕ · · · ⊕ Vn)

We relabel Vj = V̂ , and so the data for the next step will be the vectors

V1, . . . , Vn.

Vector erasing: The vectors Vi whose indices are given by symbols |i occurring on Step s are all
replaced with zero vectors.

Returning a Farey simplex Ts: On this step we return the Farey simplex

Ts = conv(V1, . . . , Vn).

If the Farey summation continued fraction is finite then the algorithm is iterated until the
last element, at which point all vectors except Vj are set to be the zero vector. The algorithm
is iterated indefinitely otherwise. It generates the sequence of Farey simplices (Ts) that are used
in the Farey summation algorithm for the vector v whose continued fraction is α.

Example 2.43. Let us study the case v = (5, 7, 8) of Example 2.26, which has continued
fraction [1, 1, 2|2 1]. We write the corresponding nose stretching algorithm for the basis vectors.
For brevity we write the three vectors in the form of a 3× 3 matrix.1 0 0

0 1 0
0 0 1

 1−→

1 0 0
1 1 0
1 0 1

 1−→

1 1 0
1 2 0
1 2 1

 2−→

1 1 4
1 2 6
1 2 7

 |2−→

1 0 4
1 0 6
1 0 7

 1−→

5 0 4
7 0 6
8 0 7

 (|3)−−→

5 0 0
7 0 0
8 0 0


As output we have the only non zero vector, v = (5, 7, 8). We omit the final |3 in the continued

fraction.
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Figure 2: Meester algorithm divergence set (several iterations)

2.6 A few words on convergence of the Farey summation algorithm

Let us briefly discuss the convergence properties of the Farey summation algorithm. Without loss
of generality we restrict to the three-dimensional case, the situation in the higher dimensional
case is similar to R3. The results of this section follow directly from [34].

2.6.1 The divergence set is everywhere dense

First of all note that the Farey tessellation converges to a single ray if and only if the Meester
algorithm converges to (0, 0, 0). It is interesting to observe that the Meester algorithm does not
always converge to (0, 0, 0) everywhere in the positive orthant (see [37] for the three-dimensional
case; see [34] for the proof in the higher the dimensions).

As it was shown in [34] if at some iteration of the algorithm one of the coordinates exceeds
the sum of the other two, then there is no convergency. For this reason the convergency set can
be constructed by removing the “corner cones” generated by the vectors:

[a1; · · · : an | 1], [a1; · · · : an : 0 | 1], [a1; · · · : an : 0 : 0 | 1];

and the “centre” is at
[a1; · · · : an | ].

for all admissible sequences (a1, . . . , an) with an ̸= 0.

It is clear that the set is invariant under the multiplication of all the coordinates by any
positive real number. Hence to get the structure of the non-convergency set it is sufficient to
know the intersection of this set with the plane x1 + x2 + x3 = 0.

In Figure 2 we show the first several removed triangles. They correspond to the sum of the
elements of the Farey summation continued fractions smaller or equal to 3 and 4 respectively.
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On the left figure we show the removed (corner) triangles. Dashed lines connect the vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1) to the “centre” points [a1; · · · : an | ].

2.6.2 No guaranteed algebraic cubic periodicity of the Farey summation algorithm

First of all let us observe the following straightforward statement.

Proposition 2.44. Let v = (x, y, z) be a vector such that 0 < x < y < z. Assume that the
fraction for v contains only entries for A1 and A2. Namely, it is equivalent to the following
infinite sequence.

[a1; a2 : 0 : a3 : a4 : 0 · · · |]
Then the regular continued fraction for y/x is [a1; a2 : a3 : a4 · · · ].

Now let us consider one particular example when cubic periodicity fails (that provides a
counterexample to the Last Jacobi’s theorem for Farey summation algorithm).

Example 2.45. (Failure of algebraic cubic periodicity.) Consider the matrix10 0 1
1 10 0
0 1 0

 .

Its characteristic polynomial t3 − 20t2 + 100t− 1 is irreducible over Q. Let us take the vector v
corresponding to the maximal eigenvalues and with the last coordinate equal to 1:

v ≈ (3.21113935 . . . , 10.31141595 . . . , 1).

The corresponding Farey summation continued fraction is

[0; 0 : 3 : 4 : 0 : 1 : 2 : 0 : 1 : 3 : 0 : 1 : 3 : 0 : 1 : 1 : 0 : 2 : 1 : 0 : 1 : 19 : · · · | ],

which is not periodic, since the sequence of elements for this continued fraction coincide (after
removing zeroes) to the regular continued fraction for the cubic number v1/v3:

v1
v3

= [3; 4 : 1 : 2 : 1 : 3 : 1 : 3 : 1 : 1 : 2 : 1 : 1 : 19 : · · · ].

This continued fraction is not periodic by Lagrange’s theorem, since the ratio v1/v3 is not a
quadratic irrational number.

3 Properties and invariants of Farey polyhedra

Now we come to the main section of the paper.

We start with a short discussion of the basic properties of the Farey tessellation. Then in
Subsection 3.2 we introduce a central object of study, the combinatorial prismatic diagram. From
these diagrams, in Subsection 3.3 we define a generalisation of the notion of sails and introduce
the important invariants, the LLS sequences.

In Subsection 3.4 we study the matrix decomposition of the Farey summation algorithm,
which is necessary for the study of LLS sequences in Subsection 3.5. The decomposition allows
a simple definition of three-dimensional continuants, shown in Subsection 3.6.

We finish the section in Subsection 3.5 where we introduce frieze patterns from prismatic
diagrams, and discuss the generating Ptolemy relation for frieze patterns.
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3.1 Basic properties of Farey tessellation

Now it is time to formulate and prove the following general statements of the structure of the
Farey tessellation of the positive orthant.

Proposition 3.1. The following holds:

(i) The union of all vertices of all Farey simplices (of all dimensions) is the intersection of the
unit integer sphere with the positive orthant;

(ii) The closure of the union of all the simplices is the positive orthant;

(ii) The interiors of two distinct Farey simplices of maximal dimension do not intersect.

Proof. (i) Consider v ∈ ZSn−1 in the positive orthant. The Meester algorithm for v will generate
the Farey summation continued fraction. The corresponding nose stretching procedure for that
continued fraction will produce a sequence of Farey simplices, such that the last one contains v
as a vertex.

(ii) Consider any point v with non-rational coordinates and consider a sequence of elements
vi ∈ ZSn−1 whose directions converge to the direction of v. Then the closure of the union of
segments Ovi contains v in the closure. Finally note that Ovi is covered by Farey simplices,
where this covering is produced by the nose stretching procedure for v.

Since the set of v with irrational coordinates is everywhere dense, the closure of Farey simplices
covers the whole positive orthant.

(iii) Let these simplices S1 and S2 be constructed by two distinct sequences of the Farey algorithm
Λ1 and Λ2. Let us consider the following cases:

• If Λ1 starts from Λ2. Then let us pick the plane π of the last supporting simplex in Λ1.
By construction the origin and S1 are in one halfspace with respect to π while S2 is in the
other. Therefore, their interiors do not intersect.

• If Λ2 starts from Λ1. This case is similar to the above one.

• Neither of the above two cases. This means that after some time the sequences of simplices
projects to different non-intersecting triangles in the Farey net. Therefore they do not have
a common point in their interiors.

We would like to continue with the following important example.

Example 3.2. Farey three-dimensional tessellation does not contain all empty tetra-
hedra of volume 2. Let

v1 = (6, 14, 15), v2 = (5, 13, 14), v3 = (5, 12, 13),

and let w = v1 ⊕ v2 ⊕ v3 = (16, 39, 42).
The tetrahedra wv1v2v3 is empty. The continued fraction of w is [2; 1 : 2 : 0 : 3|1,3]. The base

triangle of the tetrahedron that has pennant w is formed from the vertices [2; 1], [2; 1 : 2], and
[2; 1 : 2 : 0 : 2]. These are not the vertices v1, v2, and v3. The reason for this is that to reach
any vi we must use a two-dimensional step. Hence not all empty tetrahedra are contained in the
three-dimensional Farey tessellation.
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3.2 Prismatic triangulations

Now we study the combinatorial structure of Farey polyhedra.

3.2.1 Ordered path-triangulations and their complete invariant

In this section we consider polyhedra as convex hulls of finite numbers of points. We say that a
polyhedron is marked if each of its edges contain a finite number of marked interior points (zero
is also allowed). A decomposition of a marked polyhedron P into non-intersecting simplices (of
maximal dimension) is said to be a triangulation of P if the set of vertices of all such simplices
coincides with the union of all vertices of P and all marked points of P .

Recall that the dual graph of a triangulation is the graph whose vertices are labeled by
simplices in the triangulation; an edge of the dual graph connects two vertices if and only if the
corresponding two simplices share a face of codimension 1.

Definition 3.3. We say that two triangulations are similar if there is a one-to-one map between
their simplices that provides equivalence of their dual graphs.

Below we study triangulations of the following type.

Definition 3.4. We call a triangulation T a path-triangulation if its dual graph is a path graph.

3.2.2 Decks, masts, yards, crow’s nests, and pennants

Recall the definitions of Subsection 2.3. In order to remove some natural symmetries of path-
triangulations we introduce the following definition.

Definition 3.5. Consider a path-triangulation T . Let us mark by S0 and S1 the two simplices
corresponding the endpoints of the dual graph, and let F0 and F1 be one of the codimension 1
exterior faces of S0 and S1 respectively, (i.e. F0 and F1 are not faces of some simplex other than
S0 and S1). We say that T is ordered if the faces (F0, F1) are fixed and the vertices of F0 are
ordered. We say that F0 is deck of T , and that F1 is the nest of T (or crow’s nest). The unique
vertex of the nest that is not a vertex of any other simplex is called the pennant.

As we show later the nest has a natural ordering induced by the ordering of its deck (see
Remark 3.10 below).

Definition 3.6. We say that an edge of an ordered path-triangulation is a mast edge if it is
adjacent to a single simplex of maximal dimension and does not belong either to the deck or the
nest of the triangulation.

An edge is said to be a yard edge if it is adjacent to more than one simplex of the triangulation.

A connected component of the union of edge masts is called a mast. A k−1-dimensional face
belonging to several simplices is called a yard.

Example 3.7. Figure 3 below shows a combinatoric representation of two-dimensional Farey
summation continued fractions. On these diagrams, the deck and nest are represented by grey
edges, and the masts by the exterior edges. The interior diagonals are yard edges (in two
dimensions yards and yard edges coincide)

Proposition 3.8. The following statements hold:

• Each simplex that is not the deck or the nest has precisely one mast edge;
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• Any mast is a broken line;

• One endpoint of any mast is at the deck and another is at the nest;

• Any vertex of the nest/deck has at most one mast adjacent to it with one exception. If a
vertex of a deck is a vertex of a nest, then no mast are adjacent to this vertex.

Proof. Each simplex that is not the deck or the nest of the triangulation contains two faces of
codimension 1 that are yards. The union of their edges are all edges of the simplex but one. This
concludes the proof of the first item.

We prove the second, third, and fourth items simultaneously by induction on the number of
simplices in the triangulation.

Base of induction. All the statements hold for a single simplex triangulation. It has a deck, a
nest, and a single mast edge between the vertex of a deck that is not in the nest and a vertex of
the nest that is not in the deck.

Step of induction. Let the statement hold for all triangulations on n−1 simplices. Consider any
triangulation T of n simplices. The last simplex Sn of this triangulation has the nest N and one
yard Y . Let D denotes the deck of T .

Let us remove Sn and consider the last yard Y as the nest of a smaller triangulation T ′. All
the statements hold for T ′. Let us now add Sn. The last mast edge connects N and Y . Therefor:

• All mast are broken lines, as we add the last edge to the vertex where either only one mast
or no masts.

• We either have changed only one endpoint of masts, which will have vertex in the nest N ,
or we create a new mast, then the corresponding vertex of Y should have been a vertex of
the deck D by the induction assumption.

• Finally T and T ′ has the same deck D and the nests Y and N different by one vertex
connected by a new edge. Hence the last statement holds.

That concludes the proof of the last three items.

Proposition 3.8 allows us to give the following definition.

Definition 3.9. The set of masts admits an induced ordering by the indices of the first vertices
in the masts (which is in the deck D with ordered vertices).

Remark 3.10. In particular the induced ordering of masts implies the ordering on the nest.
Informally speaking, masts have a flavour of the notion of the parallel transform in differential
geometry.

3.2.3 Prismatic polygons and diagrams

Definition 3.11. Let Rk−1 be a simplex of dimension k−1 with enumerated vertices R1, . . . , Rk.
Let v be a non-zero vector orthogonal to the plane R1, . . . , Rk. Let also D = (d1, . . . , dk) be a
collection of non-negative integers. A prismatic polyhedron is a marked polyhedron

conv(R1, . . . , Rk, R1 + d1v, . . . , Rk + dkv),

where at each edge (Ri, Ri+div) all the points Ri+kv with 1 ≤ k ≤ di−1 are marked.
We denote it by (Rk−1, v,D).
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Figure 3: Triangulated canonical prismatic diagram

For any triangulation of the prismatic polyhedron we mark the faces

F0 = (R1, . . . , Rk), and F1 = (R1 + d1v, . . . , Rk + dkv);

we order the vertices of faces as indices of Ri. Any ordered triangulation (with marked faces F0

and F1 as above) of a prismatic polygon is called a prismatic diagram.

In the two-dimensional case the canonical prismatic diagram is also known under the name
Farey boat, based on the terminology from [40].

Definition 3.12. A prismatic diagram is said to be canonical if Rk−1 is the tetrahedron whose
vertices are the endpoints of the first k coordinate vectors and v = (1, 1, . . . , 1, 0, 0, . . . , 0), where
the number of unit coordinates is k.

Definition 3.13. Consider a canonical prismatic triangulation D of length n and dimension k.
The LR-sequence of D is the following sequence of indices in {1, . . . , k} of length n:

(M1, . . . ,Mn),

where Mi ∈ {1, . . . , k} denotes the index of a mast that we build on Step i.

Recall that the masts are ordered (1, . . . , k): at each Step i of the Farey summation algorithm
we add a single mast edge to one of the masts. The index of the addended mast is collected as
Mi.

Remark 3.14. In particular we can write the LR-sequence in the exponential form:

1a12a2 . . . kak1ak+1 . . .

for some non-negative collection of ai. This expression provides a link to theory of continued
fractions, which we explore in this paper for the particular case of Farey summation continued
fractions. (It can be applied to other additive algorithms as well.)

Example 3.15. In Figure 3 we show the three triangulations of the prismatic polygons in two
dimensions with D = (1, 3). The decks and nests are shown in grey. The masts are shown
in bold. The LR-sequences from left to right are (1, 2, 2, 2), (1, 2, 1, 1), and (1, 1, 1, 2) or, in
exponential form, (11, 23), (11, 21, 12), and (13, 21), respectively. The pennant is the point (3, 4)
in each diagram.
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Remark 3.16. Canonical prismatic diagrams generalise the Farey boats introduced by S. Morier-
Genoud and V. Ovsienko in [40] to higher dimensions. The prismatic diagrams in Figure 3 are
exactly the Farey boats (also called wrinkled triangulations), after transformation of vertices by(

0 1
−1 1

)
.

The prismatic diagrams give a combinatorial description of Farey polyhedra. In two dimensions
they link to the theory of cluster algebras through their relation to Conway-Coxeter friezes.
The connection between frieze patterns and triangulated polygons was found by J. Conway and
H. Coxeter in [12], and the connection to cluster algebras by P. Caldero and F. Chapoton [11].

The following statement is now straightforward.

Corollary 3.17. The LR-sequence is an invariant of similarity of ordered path-triangulations.

Let T be a path-triangulation of a k-dimensional polyhedron. Let us describe a natural
piecewise linear map to the canonical prismatic diagram T .

– First of all we map the deck of T linearly to the triangle E1 . . . Ek.

– Secondly we map the masts linearly to the corresponding lines Ei + tv parameterised by
t. The map is linear at each mast edge, and it sends consequences vertices to consequent
points Ei + jv where j = 1, 2, . . ..

– Finally, once the images of all simplices are defined, we map them linearly as well.

Definition 3.18. The prismatic polygon constructed above is said to be associated to a path-
triangulation T .
The associated polygon has an induced structure of an ordered triangulation, which we call the
canonical prismatic diagram of T and denote by D(T ).

Definition 3.19. We say that two prismatic diagrams are similar if there exists an affine map
that preserves the triangulation and sends marked faces F0 and F1 from the first diagram to the
marked faces F ′

0 and F ′
1 respectively (here our map must preserve the enumeration of vertices)

of the second diagram.

Corollary 3.20. The canonical prismatic diagram is a complete invariant of prismatic triangu-
lations.

Proof. Indeed any canonical prismatic diagram is an ordered triangulation, so all canonical dia-
grams appear.

It is also clear from construction that different canonical prismatic diagrams are not similar.
Finally the above construction shows that every ordered triangulation is similar to one of the

canonical prismatic diagrams.

Remark 3.21. As a conclusion the LR-sequences is a complete invariant of canonical prismatic
diagrams (and, equivalently, of similarity types of ordered path-triangulations). Hence the num-
ber of distinct canonical prismatic diagrams (of dimension k consisting of d simplices) coincides
with the number of LR-sequences of length d, which is equivalent to kd.
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3.2.4 Prismatic flag diagrams

Definition 3.22. Let P1(Rk1−1, v1, D1) and P2(Rk2−1, v2, D2) be two prismatic polytopes such
that k2 ≤ k1. Let also S ⊂ {1, . . . , k1} be a k2 element set of indices. The concatenation of
(Rk1−1, v1, D1) and (Rk2−1, v2, D2) with respect to S is adding extra segments in the direction
of the rays with indices si ∈ S for i = 1, . . . , k2:

[R1,si + d1,siv1, R1,si + d1,siv1 + d2,iv1],

where si is the i-th element of S. The resulting set is the union of the polytope P1 and the
convex hull of all the new added segments

P1 +S P2.

We denote it by (
Rk1−1, v1, D1, (D2, S)

)
.

Definition 3.23. Now let us have a sequence of prismatic polytopes Pj(Rkj−1, vj , Dj) with
j = 1, . . . , l with k1 > k2 > · · · > kl. Let also Si be sets of indices of ki elements such that Sl ⊂
Sl−1 ⊂ · · · ⊂ S1 (disregarding the orders of their elements). Here we assume S1 = (1, 2, . . . , kl).
The polytope

(. . . (P1 +S2
P2) +S3

P3) +S4
· · · ) +Sl

Pl.

is said to be a prismatic flag polytope. We denote it by(
Rk1−1, v1, (Di, Si)

l
i=1

)
.

Let now Pj have prismatic diagrams Tj for j = 1, . . . , l. The natural mapping of these trian-
gulations to the prismatic flag polytope is said to be a prismatic flag diagram. We denote it
by

(Ti, Si)
l
i=1,

where S1 = (1, . . . , k).
In the case when T1 is a canonical prismatic diagram, we say that the prismatic flag diagram is
canonical as well.

Remark 3.24. Note that the concatenations of prismatic polytopes and their prismatic diagrams
depend neither on the positions of tetrahedra Rki−1 nor on vectors vi for i = 2, . . . , l; it depends
only on the dimensions ki and the sets Di (for i = 2, . . . , l) and on the first prismatic polytope
(Rk1−1, v1, D1).

Remark 3.25. Finally it remains to say that, due to the freedom of the ordering of subsets Si,
there are several obvious ways to obtain the same canonical flag diagrams (by permuting Si and
the LR sequences of the corresponding Ti).

3.2.5 Canonical Prismatic flag diagrams and Farey summation continued fractions

Consider an extended Meester algorithm continued fraction:

α =
[
a1; · · · : asj1 |j1 asj1+1 : · · · : asj2 |j2 asj2+1 : · · · : asjn−2

|jn−2 asjn−2+1 : · · · : aN
]
.

For every i = 1, . . . , n − 1 we consider Ti be the canonical prismatic diagram, whose LR-
sequence is (asji−1

+1, . . . , asji ). Here we allow the sequences to be empty. Finally let

S1 = {1, . . . , k} and Si = Si−1 \ {ji} for i = 2, . . . , n− 1.
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C0

B1

A1

C1 C2c

Figure 4: Two prismatic triangulations for (5, 7, 8) corresponding to [1; 1 : 2 |2 1] (Left) and to
[1; 1 : 2 |2 0 : 1] (Right).

Definition 3.26. We say that the canonical flag diagram (Ti, Si)
n−1
i=1 constructed above is the

canonical prismatic flag diagram for the Farey summation continued fraction α. We denote it
by T (α).

Theorem 3.27. The canonical prismatic flag diagrams form a complete invariant for Farey
summation continued fractions. In addition the combinatorics of T (α) coincide with the combi-
natorics of the Farey polyhedron.

Example 3.28. Let us show the prismatic triangulations for the vector v = (5, 7, 8) of Exam-
ple 2.26.

Note that we have two different continued fractions defined by (5, 7, 8):

[1; 1 : 2 |2 1], and [1; 1 : 2 |2 0 : 1].

(Technically the algorithm will never arrive to the second continued fraction.)
The corresponding canonical prismatic flag diagrams are shown in Figure 4. They both

consist of 4 simplices of dimension 3 and one simplex of dimension 1. The simplices of dimension
3 are

A0B0C0A1, A1B0C0B1, A1B1C0c, A1B1cC1.

The simplices (triangles) of dimension 2 are A1C1A2 and A1C1C2 respectively.

Remark 3.29. The above construction has a straightforward generalisation to the case of infinite
continued fractions. We omit it here.

3.3 Sails and their LLS sequences

In this subsection we discuss a generalisation of sails and LLS-sequences to the multidimensional
case.

3.3.1 Sails of prismatic diagrams and Farey polyhedra

Definition 3.30. Let T be a canonical prismatic flag diagram in dimension n. Consider the
hyperplane spanned by a codimension 1 face of the deck (we exclude the i-th vertex) and the
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vector (1, 1, . . . , 1). The intersection of T with this hyperplane is called the sail of the T and
denoted saili(T ).

The intersection of the sail saili(T ) with the deck, the nest, masts, and yards are respectively
the deck, the nest, the masts, and the yards of saili(T ).

Definition 3.31. The inverse image of the piecewise linear map (see Definition 3.18) between
the union of the Farey polyhedron (equipped with its subdivision to Farey simplices) and the
corresponding canonical prismatic flag diagram defines the masts of the Farey polyhedron. Recall
that the deck/nest/yards/pennant are already stated in Algorithm 2.18.

In addition the inverse image defines sails of the Farey polyhedron and their decks, nests, masts,
and yards.

Remark 3.32. The sail saili(T ) is the union of the simplices bound by all but the i-th mast, and
the masts themselves. In two dimensions saili(T ) is simply the i-th mast. In this case we have a
classical construction of sail, see e.g., in [22]. The earliest use of the term sail is from V. Arnold,
see for instance [1]. The theory of geometric continued fractions was instigated by F. Klein in
his papers [29, 30].

Three-dimensional sails for a ray v in the positive octant are the unions of pairs of masts
together with the sequence of triangles joining them.

3.3.2 On the masts at the point of dimension drop

First let us assume that all of the simplices of the Farey summation continued fraction are of the
same dimension k. Then all the mast edges are uniquely defined except for the last one. This
happens since there is no natural way to define the nest combinatorially (without involving any
ordering). So we can connect the last vector with any of the masts. In other words we have:

[a1; a2 : · · · : an] = [a1; a2 : · · · : an−1 : 1] = [a1; a2 : · · · : an−1 : 0 : . . . : 0 : 1].

where the number of zeroes does not exceed k − 2. This will represent precisely all possible
choices of the nest and of the last element of the mast.

This corresponds to the phenomenon for classical continued fractions, where:

[a1; a2 : · · · : an] = [a1; a2 : · · · : an−1 : 1].

Now if a canonical prismatic diagram consists of several parts of different dimensions, a similar
situation occurs. Here, for each one of the masts that vanishes at this step, its indices should be
connected to the first new point of the next part of the flag.

3.3.3 A rigid structure of Farey masts, nose stretching

If we elongate any edge of any mast by a unit length vector in the direction of the edge we will
reach the first point of some edge on one of the other masts.

Remark 3.33. Informally speaking the structure of the Farey polyhedron is linearly rigid. It
gives rise to various dualities of the sails. The fact that stretching a mast edge provides the
starting point of a separate mast edge provides a very fast geometric construction of the Farey
polyhedron.

Namely, we start with basis elements Ei (i = 1, . . . , k) and their sum P1. Then add the vector
E1P1 to E1, a1 times. This will generate the first new vector of the Farey polyhedron (of course
if a1 ̸= 0), which we denote by E1,2.
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Now we add E1P1 to E1,2 once more to get P2, symbolically

E1,2 = E1 + a1E1P1,

P2 = E1 + (a1+1)E1P1.

Now the point P2 is on the first edge emanating from E2 (except for the case a2 = 0). So we set

E2,2 = E2 + a2E1P2,

P2 = E2 + (a2+1)E1P2.

Proceeding further we will construct the whole Farey polyhedron. This procedure is called the
nose stretching for prismatic diagrams. Informally, at each moment we stretch one of our k-noses
further and further away.

Definition 3.34. The vertices Ei,j generated by the algorithm are called the partial quotients
of v.

Remark 3.35. Nose stretching exactly generalises the procedure for classical continued fraction
theory. This procedure is specific to the Farey algorithm.

3.3.4 LLS-sequences and their dualities

Every sail possesses a collection of invariants that encodes most of the elements of the continued
fractions. In this subsection we introduce the LLS-sequence. Let us start with a few notions
used in the definition of the LLS-sequence.

An angle is integer if its vertex is an integer point. An angle is rational if both of its edges
contain integer points distinct from the vertex.

Definition 3.36. Let π1 and π2 be two planes with a nonzero intersection. Let W be a basis
for π1 ∩ π2, and let U and V be complements of W to the bases of π1 and π2 respectively. Then
the expression

lV(V,U,W )

lV(V ) · lV(U) · lV(W )

is called the integer sine of the angle between π1 and π2 and denoted by lsin(π1, π2).

Definition 3.37. Consider the sequence of principal simplices Ti constructed by the Farey
summation algorithm for some integer vector. Let Fi be the intersection of a sail with the
principal simplex Ti. Then we say that Fi is a principal face of this sail if dimFi ≥ dimTi − 1.
The set of all principal faces of a sail has a natural ordering induced by the ordering of the Farey
summation algorithm.

A mast segment is the union of all mast edges in a line.

Remark 3.38. For the principal face there are the following two possibilities.

dimFi =

{
dimTi, if the j-th mast was removed before the i-th step;
dimTi − 1, otherwise.

Example 3.39. In Figure 4, for the sail between masts A and C, we see the principal faces are
A0A1C0, A1C0C1, and C1A1A2.

Definition 3.40. The LLS sequence of the j-th sail is the j-th sail of the canonical prismatic
flag diagram equipped with the following:
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• Each pair of consecutive principal faces is equipped with the integer sine between the planes
that these faces span. We indicate the yard edge connecting both principal faces (edge of a
principal yard) and equip it with the corresponding integer sine (a dashed line indicates 0
integer sine: in this case the principal faces lie in the same plane in the Farey polyhedron);

• We indicate the dropping of the j-th mast by a double yard edge.

• For the simplicity of drawing we replace mast segments of length n by a single segment of
length 1 equipped with n (the integer length).

Remark 3.41. The term LLS-sequence (lattice length-sine sequence) comes from a similar notion
in the two-dimensional case (see, for example, in [21, 22]). In the two-dimensional case we have a
sequence of numbers, whereas in three dimensions the prismatic flag diagrams encode sequences
of principal faces.

For consistency, let us start with our standard example.

Example 3.42. Let us start with the Farey polyhedron for v = (5, 7, 8) of Example 2.26.

A0

B0

C0

B1

A1

C1

A2

The sails opposite to masts B, A, and C have the following LLS-sequences.

2

1 1

2 1

C0 C1

A0
A1 A2

1 1

1

3

B0 B1

A0 A1
A2 1

2

B0 B1

C0
C1

The first sail is the most informative, it shows all the positive elements of the continued
fraction [1; 1 : 2 : 0 : 0 | 1]. As we will see later in Proposition 3.45, the first element of the Farey
summation continued fraction is the first number in the top row; the second element is a half of
the first number in the middle row; the third element is the bottom one; the last element is the
last in the top row.

In order to further understand the coefficients of the LLS-sequence we consider a longer
example.

Example 3.43. Let us consider a vector

v = (1656812331613081, 18353000512178816, 19770900109601816).
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Direct computation shows that its Farey summation continued fraction is

[11; 12 : 13 : 14 : 15 : 16 : 17 | 100 : 200 : 300 : 400].

The LLS-sequence of the sail for the first two masts is as follows:

11 14 17

12 15 100 300

26 32

1

200

Here the first mast is the bottom one, the second mast is the top one. We write the corresponding
integer lengths near the corresponding mast segments.

The non-horizontal segments with numbers indicate the common faces of two consecutive prin-
cipal faces, the numbers are the corresponding integer sines of the angles between the planes.

Finally, dashed lines correspond to the yards joining the endpoints of the mast segments of the
same principal face. (They indicate the order in which the continued fraction should be taken,
here we add triangles from the left to the right, the middle numbers go first.)

The elements of the Farey summation continued fraction of index 3i+1 are on the first mast;
of index 3i+2 are on the second. In order to get the remaining elements, we divide the sequence
of integer sines by the dimension of the smallest adjacent principal face, i.e. 26/2, 32/2, and
200/1.

Let us write the LLS-sequences for the other two sails. The LLS-sequence for the sail with
the second and the third masts is follows:

12 15 100 300

13 16 200 400

28 1

Finally the LLS-sequence for the sail with the third and the first masts is

13 16 200 400

11 14 17

24 30

99 300

Remark 3.44. As we see the LLS-sequences contain information on most of the elements of the
continued fraction (except for the few first and last elements) This situation is similar to the
classical case. It is due to the duality discussed in the next proposition.

We say that the sail opposite to a given mast is the sail that does not contain this mast.
We say that two mast segments on different sails of the Farey polyhedron are neighbours if the

lines containing them intersect. As we know from Subsection 3.3.3 every mast segment contains
precisely two neighbours (except for the first one and for the last one).
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Proposition 3.45. (On duality of integer lengths and integer sines in sails.) Consider
a mast segment M and let π1 and π2 be the planes of the principal faces of the opposite sail that
contain neighbouring segments. We assume that the dimensions of π1 and π2 are both equal to
k. Then the integer length of the mast segment M multiplied by k is the integer sine of the angle
between π1 and π2,

lsin(π1, π2) = k · lℓ(M).

Proof. The proof is straightforward. Any two consecutive planes in some coordinates are equiv-
alent to two planes of a short Farey summation continued fraction formed only by 3 positive
elements, say (a, b, c).

Note that the elements a and c correspond to the some mast segments of the sail, while b
corresponds to some mast segment of the opposite mast. There are only two different cases here
(up to re-numeration of basis vectors): either the mast segments for a and c are on the same
mast or not.

In both cases direct computations show that the integer sine equals kb. This concludes the
proof.

We discuss the three-dimensional case in more detail (including the cases of different dimen-
sions of faces) in Subsection 3.5 after we introduce the matrix form.

3.4 Semi-group of matrices by multiplication

The multidimensional Farey summation algorithm can be described by matrix multiplication.
At each step we multiply by a certain matrix. In this subsection we continue with the three-
dimensional case in order to simplify the exposition. Nevertheless most of the definitions, notions,
and statements have a straightforward generalisation to the multidimensional case.

3.4.1 Matrices associated to the steps of the algorithm

The algorithm begins in Stage 1 with two-dimensional yards; at that stage we employ the ma-
trices:

A1 =

1 0 0
1 1 0
1 0 1

 , A2 =

1 1 0
0 1 0
0 1 1

 , and A3 =

1 0 1
0 1 1
0 0 1

 .

Once we arrive at one-dimensional yard (i.e. to Stage 2) we continue with matrices

Bij = ld+Ei,j , for 1 ≤ i, j ≤ 3 and i ̸= j.

Here ld is the identity matrix and Ei,j is a matrix with only one non-zero entry at place (i, j)
which is equal to 1.

3.4.2 Partial quotients

Let us continue with the notion of partial quotients.

Definition 3.46. Let α = [a1 : · · · : an|b1 : · · · : bm] be a continued fraction. Consider the
matrix

M = Aa1
1 Aa2

2 Aa3
3 Aa4

1 . . . Aak

k Bb1
stB

b2
tsB

b3
stB

b4
ts . . . ,

where s, k ∈ {1, 2, 3} such that s = k+1 mod 3, t = k+2 mod 3. We say that the vectors of M
form the integer basis associated with the continued fraction. We say that the matrix M is the
continued fraction matrix and denote it by M(α).
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Remark 3.47. The matrix decomposition of Definition 3.46 is extremely important. It provides
an analytic continuation of the Farey summation algorithm to the case of arbitrary real elements.
In the above definition one can take arbitrary real numbers (ai) and (bj), as these powers are
well-defined for the matrices. Here one should replace the non-zero off-diagonal elements by the
corresponding (ai) and (bi); e.g.

Aa1
1 =

 1 0 0
a1 1 0
a1 0 1

 .

Remark 3.48. We would like to stress that the matrix multiplication order for Farey summation
algorithm is as in Definition 3.46 and not the inverse one.

Remark 3.49. Finally, note that we use the Farey summation continued fraction here, and not
the Meester algorithm continued fraction (the difference is simply in the number and position of
certain zeroes in the continued fraction).

Definition 3.50. Let α be some continued fraction and let αi be the continued fractions defined
by the first i elements of α. We say that αi is the i-th partial quotient of α, and call M(αi) the
i-th partial quotient matrix and denote it by Mi(α).

Proposition 3.51. Let α be a continued fraction for v. Then the partial quotient matrix Mi(α)
contains all the vectors of the i-th yard as columns.

In particular if we have the following statement.

Corollary 3.52. Let α be a finite continued fraction for v. Then the continued fraction matrix
M(α) contains the vector v as a column.

Remark 3.53. It turns out that matrices A1, A2, and A3 form a free generated semi-group (as
they correspond to different triangles in the tessellation). Their products applied to (1, 0, 0)
generate all integer vectors v of ZS2 whose continued fraction have empty sequence (bi). It
is clear that we cannot the integer obtain vectors of ZS2 that have a non-zero (bi) sequence.
For instance, v = (6, 14, 15) from Example 3.2 is one of such vectors, it has continued fraction
[2; 1 : 2|2 0 : 0 : 2].

We arrive to the following natural question.

Problem 1. Describe the set of matrices M(α) where α has a finite sequence (ai) and an empty
sequence (bj).

Remark 3.54. Now we have a simple way to compute all Farey simplices for the given vector
v. First of all the Meester algorithm produces the continued fraction α(v) for v. Secondly the
matrices Mi−1(α(v)) and Mi(α(v)) provide all the vertices of the i-th Farey simplex for v. Here
the matrix M−1

i−1(α(v)) ·Mi(α(v)) tells us which columns are in the simplex (This matrix is either
one of the A or B matrices in position i of the decomposition of Definition 3.46.)

Remark 3.55. The matrix multiplication introduced in this subsection can be extended to the
higher dimensional cases in a straightforward way. Since we mostly work in the three dimension
case in what follows, we skip the multidimensional notation here.

Example 3.56. Consider v = (5, 7, 8) from Example 2.26. As we know from Example 2.30, the
continued fraction for (5, 7, 8) is

α(v) = [1; 1 : 2 : 0 : 0 | 1].

Hence
M(α(v)) = A1A2A

2
3A

0
1A

0
2B31.

It is interesting to note that v can be alternatively obtained from [1; 1 : 2 : 0 : 0 | 0, 1]
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3.5 LLS-sequence in the three-dimensional case

In this subsection we discuss the three-dimensional LLS sequence in more detail.

3.5.1 Values of integer sines in the LLS-sequence

Let us discuss how to get the values of the elements of the Farey continued fraction from LLS
sequences. Without loss of generality we consider the sail defined by the first and the third masts.
The integer lengths of the segments for the first and the third masts are shown on the top and the
bottom horizontal lines of the sails representing masts 1 and 3; they provide nearly two thirds of
all the elements of the continued fraction. We should learn how to read the elements represented
by integer lengths of mast 2, which is not presented in our sail. Most of the elements of the
second mast are reconstructable from the elements of the LLS sequence connecting the masts 1
and 3. These elements are integer sines of two consecutive faces of the corresponding sail. Such
faces are generated by two, three, or four consecutive division tetrahedra (see Definition 2.22).
In fact, four consecutive division tetrahedra are needed only in a very specific case when we
drop dimension (represented in line 7 of Table 1 below); that might happen at most once for
every continued fraction. We have the following different situations for the values of integer sines
(without loss of generality we list only the cases when we start with mast 1):

In Table 1 we show schematically a part of the matrix decomposition for a continued fraction
and the corresponding part of the LLS-sequence. Here the bottom and the top horizontal lines
correspond to masts 1 and 3 respectively. Note that the integers a, b, x, and y in the table are
assumed to be positive.

In the first two lines of the table there are no division tetrahedra representing the elements
of mast 2; here the values on the sail-yards are either 0 or 1.

In the next two lines we generate the most common steps when the dimension is not dropped.
In the third line we get the case of three-dimensional division tetrahedra where the value of the
integer sine is 2x. In the fourth line we show the two-dimensional division tetrahedra with the
value of the integer sine being equal to x. This repeats the case of the classical two-dimensional
LLS-sequence.

Further in lines 5 and 6 we have two cases where the algorithm loses one dimension but the
elements of the continued fractions are still visible on the sail.

Finally in the last three lines we have the cases when we lose information on one or two of
the elements.

Let us collect the above observations in the following theorem.

Theorem 3.57. The three-dimensional LLS-sequence is an integer invariant of prismatic dia-
grams (and hence, by Theorem 3.27, also of Farey polyhedra).

Proof. Note that the values of the LLS-sequence are completely given by the integer lengths of
masts and the combinatorics of prismatic diagrams. Here the integer sines of the LLS-sequence
are written in terms of the opposite mast, as in Table 1 (see also Proposition 3.45).

Remark 3.58. Recall that the powers in the matrix form coincide with integer length of the
elements in the corresponding masts.

Remark 3.59. The situation is similar in four and higher dimensions. The number of cases will
be finite but growing rather fast with the dimension. We omit the exhaustive study of all the
cases here.
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Table 1: Matrix decomposition and the corresponding values of the LLS-sequences.

Matrix decomposition part of the LLS-sequences lsin

Aa
1A

b
3, Ba

13B
b
31

a

b

0

a b

0

b

0

Aa
1B

b
13, Aa

1B
b
31, Aa

1B
b
12

a b

1

b

a

b

1

a b

1

b

1

Aa
1A

x
2A

b
1, Aa

1A
x
2A

b
3

a b

2x

b

a

b

2x 2x

Ba
12B

x
21B

b
12

a b

x

b

x

Aa
1A

x
2B

b
12, Aa

1A
x
2B

b
32

a b

2x− 1

b

a

b

2x− 1
2x− 1

Aa
1B

x
21B

b
12, Aa

1B
x
23B

b
32

a b

x− 1

b

a

b

x− 1

x− 1

Aa
1A

x
2B

y
21B

b
12, Aa

1A
x
2B

y
23B

b
32

a b

2x+ y − 1

b

a

b

2x+ y − 1
2x+ y − 1

Aa
1A

x
2B

b
13, Aa

1A
x
2B

b
31

a b

1

b

a

b

1 1

Aa
1B

x
32B

b
23

a

b

1 1

3.5.2 Integer arctangent of cones in three dimensions and sails

As we have seen, in the last three cases of the table the LLS-sequence does not catch x. However
the integer invariants of the sail still encode x. First we need to set some further integer invariants.

A cone is the convex hull of three rays sharing a vertex. We call the rays the edges of the
cone. A cone is integer if its vertex is integer. An integer cone is rational if each of its rays
contains integer points distinct from the vertex.

Definition 3.60. Let α be a rational cone. Then there is an integer basis in which the vectors
of α form (as columns) a matrix 1 a1 b1

0 a2 b2
0 0 b3
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satisfying a2 > a1 > 0, b3 > b1 ≥ 0, and b3 > b2 ≥ 0. Such a matrix is uniquely defined. It
is called the integer arctangent of the cone, while its elements are said to be integer sines and
integer cosines, labelled as follows:1 lcos1,2 α lcos1,3 α

0 lsin1 α lcos2,3 α
0 0 lsin2 α

 .

(For further information, including the higher dimensional case, see [7]).

Note that the integer arctangent of α coincides with the Hermite normal form of the matrix
of unit vectors generating the edges of α. All the coefficients of this matrix are integer invariants
of the cone.

3.5.3 Application to sails

Let us go back to the last three lines of the table. More precisely we illustrate the case
Aa

1A
x
2B

y
23B

b
32 of line 7.

As we see, the integer sine in the LLS-sequence provides us the value 2x + y − 1 for the
elements x and y (these are the lengths of mast segments of mast 2 which is not in our sail).
Our aim is to construct an integer invariant of the sail that will provide us another equation on
x and y.

Consider the simplicial cone α on the vectors generated by:

• the first segment of mast 1;

• the yard segment connecting the endpoint of the first segment of mast 3 with the second
vertex of mast 1;

• the first segment of mast 3.

(All these edges are in the sail opposite to the second mast.) By the definition the arctangent of
α is 1 0 x+ 1

0 1 x+ y − 1
0 0 2x+ y − 1

 .

From the last column we have:

lcos1,3 α = x+ 1, lcos2,3 α = x+ y − 1, lsin2 α = 2x+ y − 1.

Remark 3.61. In particular lsin2 α is the value that we have computed for the LLS-sequence,
while the lcos1,3 α provides the value of x.

3.6 Continuants

In this subsection we briefly discuss the notion of continuants for Farey summation continued
fractions.

Most Jacobi-Peron algorithms are defined by a linear recursion. In the case of the Farey
summation algorithm we have the following recursion:

v1 = (1, 0, 0); v2 = (0, 1, 0); v3 = (0, 0, 1);
vi+3 = vi + ai(vi+1 + vi+2) for i = 1, 2, . . ..

(1)
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This rule give rise to special functions that are called continuants.

In general, most continued fraction algorithms based on matrix multiplication generate their
own (natural) notion of continuant. It is done as follows.

Firstly one fixes the generating family of matrices S(k) (or sometimes several families) pa-
rameterised by a non-negative integer parameter k. In the case of Farey summation continued
fractions that is

S(n) =

n 1 0
n 0 1
1 0 0

 .

Here the matrix S(n) is a composition of An
1 and a permutation of basis vectors.

Further we fix the following notation:

Mn(a1, . . . , an) =

n∏
i=1

S(ai).

Set also
vn(a1, . . . , an) = Mn(a1, . . . , an) · (1, 0, 0)⊤.

The coefficients of Mn in variables (a1, . . . , an) are used to determine the continuants. That is
suggested by the following two obvious relations on the coefficients of Mn:

• recursive relation: Mn(a1, . . . , an) = Mn−1(a1, . . . , an−1) · S(an);

• anti-recursive relation: Mn(a1, . . . , an) = S(a1)Mn−1 · (a2, . . . , an).

We synthesise the continuants as follows.

Definition 3.62. We define the n-th Farey continuant iteratively

K0 = 1;
K1(x1) = x1;
K2(x1, x2) = (x1 + 1)x2;
Kn(x1, . . . , xn) = xn

(
Kn−1(x1, . . . , xn−1) +Kn−2(x1, . . . , xn−2)

)
+Kn−3(x1, . . . , xn−3).

Example 3.63. Continuants of integer sequences are integers. For instance

K(2, 3, 4) = 45,

K(15, 2, 4, 32, 54, 7) = 2800350.

The recursive and anti-recursive relations imply the following expression for all the coefficients
of Mn in terms of continuant functions.

Remark 3.64. Note that, unlike in the two-dimensional case, we do not have the reverse symmetry
for continuants:

Kn(x1, . . . , xn) ̸= Kn(xn, . . . , x1)

Instead, from a simple inductive argument we find a separate recursive formula:

Kn(x1, . . . , xn) = x1Kn−1(x2, . . . , xn) + x2Kn−2(x3, . . . , xn) +Kn−3(x4, . . . , xn).
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Proposition 3.65. We have

Mn(a1, . . . , an) =
(
vn(a1, . . . , an), vn−1(a1, . . . , an−1), vn−2(a1, . . . , an−2)

)
,

where

vi(a1, . . . , ai) =

 Ki(a1, . . . , ai)
a1Ki−1(a2, . . . , ai) +Ki−2(a3, . . . , ai)

Ki−1(a2, . . . , ai)

 .

Proof. The expression for Mn in terms of vn, vn−1 and vn−2 follows from the recursive relation.
The expression of vi via continuants is a consequence of the anti-recursive relation.

Remark 3.66. Note that
vn(a1, . . . , an) = [a1; · · · : an | ].

Remark 3.67. The above is entirely related to Stage 1 (namely to matrices A1, A2, A3). Stage 2
for Bij employs classical continuants.

Example 3.68. Not all integer vectors of unit length are reached by continuants. As we have
seen before, we sometimes need to use multiplication with Bij matrices (see Example 3.2.)

Proposition 3.69. Consider an integer point p with positive coordinates and with unit integer
distance to the origin. Let us assume that

p = vn(a1, . . . , an)

for some non-negative integers ai (no two zeroes in a row except possibly at the start, an ≥ 2).
Then we also have

p = vn+1(a1, . . . , an−1, 1) = vn+2(a1, . . . , an−1, 0, 1).

Proof. This follows directly from the fact that the tetrahedra in the tessellation do not intersect.

Remark 3.70. As we see in the case of existence there are exactly three entirely three-dimensional
Farey summation continued fractions representing p. The lengths of these continued fractions
are three consecutive integers. This is similar to the classical two-dimensional case. In fact a
similar statement holds in the multidimensional case (we omit it here).

3.7 Three-dimensional frieze relation

Frieze patterns are tables of numbers that encode the combinatorics of polygon triangulations.
In this subsection we say a few words on a construction similar to frieze patterns in the classical
case. Here we restrict ourselves to the case of three-dimensional Farey summation continued
fractions that do not have zero elements. We are dealing with the three-dimensional part of the
continued fraction only. We also consider only path triangulations for the polyhedra that admit
path triangulations.
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v1,1 v1,2

v2,1

v3,1 v3,2

v2,2

△L

△R

wn,an
wn,an−1

wn−2,an−2

wn−1,an−1

M3

M1

M2

△L

△R

Figure 5: Left (△L) and right (△R) triangles at the beginning and end of the (1, n)-slice.

3.7.1 Definition of λ-lengths

The tetrahedra in a prismatic diagram have a natural ordering. This ordering is defined by the
intersection of these tetrahedra with the ray starting at the center of mass of the deck R and in
the direction of v. We say that the number of tetrahedra in the prismatic diagram is the length
of the prismatic diagram.

Definition 3.71. We say that a polyhedron is an (i, j)-slice of a prismatic diagram of length
n if it is obtained from the diagram by removing all i− 1 simplices before the i-th yard and all
n− j simplices after the j-th yard. The i-th and j-th yards are called respectively the deck and
nest of the (i, j)-slice.

Definition 3.72. Let P be a prismatic diagram. Consider two vertices (v, w) in P . We say that
the geodesic ℓ(v, w) between two vertices of P is the smallest (i, j)-slice that contain these two
points.

Definition 3.73. Since ℓ(v, w) is a path-polyhedron it naturally defines a Farey summation
continued fraction F (v, w) (as discussed above). We say that the continuant of this continued
fraction is the λ-length of the geodesic λ(v, w). We set λ(v, v) = 0. We also set λ(v, w) = 1 if
v ̸= w and they are connected by a yard edge.

3.7.2 Ptolemy relation

Consider the triangulation of the boundary of the prismatic diagram.

Definition 3.74. We say that a face F is nice if it is neither a deck nor contains a vertex of the
nest.

Definition 3.75. We call a face of a prismatic diagram a left triangle (△L) if two vertices are
on mast m and one vertex is on mast m + 1 mod 3. Similarly we call a face a right triangle
(△R) if two vertices are on mast m and one vertex is on mast m − 1 mod 3. See Figure 5 for
reference.

The Ptolemy relation for prismatic diagrams in two dimensions is defined for pairs of edges
of the diagram (cf. [40]): if (a1, . . . , an) is the exponential form of the LR sequence of the
minimal polygon containing two edges in the prismatic diagram then the Ptolemy relation is the
determinant equation

det

(
Kn(a1, . . . , an) Kn(a1, . . . , an − 1)

Kn(a1 − 1, . . . , an) Kn(a1 − 1, . . . , an − 1)

)
=

{
1, n even;

−1, n odd,
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whereK here denotes the two-dimensional continuant. The values in the matrix are the λ-lengths
of pairs of vertices of the distinct edges.

Remark 3.76. Note that the values of the above matrix are exactly elements of the frieze pattern
corresponding to the triangulated polygon. The −1 occurs precisely when the initial vertex and
pennant of the (i, j)-th slice are on the same mast. This is explained by the difference between
our ordering of vertices and the ordering in the classical correspondence between triangulated
polygons and frieze patterns (see, for example, [40]).

In the three-dimensional case we define the Ptolemy relation for pairs of nice triangles (the
faces on the boundary of the prismatic diagram).

Definition 3.77. Consider an ordered pair of nice triangles V = v1v2v3 and W = w1w2w3 not
connected by a yard: V is ordered clockwise and W is ordered counter-clockwise. Then the
Ptolemy constant for the pair (V,W ) is det(λ(vi, wj)). Denote it by P (V,W ).

Definition 3.78. We label the vertices of the prismatic diagram in the following way: for the
exponential LR sequence (a1, . . . , an) we label the vertices on the masts by vi,j , where 0 ≤ j < ai,
and vi,j denotes the j-th vertex on mast segment associated to ai (as in Definition 2.28).

Note that vertices connecting the two mast segments i and j are labelled twice, as vi,ai
and

vj,1.

Proposition 3.79. Let (a1, . . . , an) be the exponential form of the LR sequence for ℓ(v1,1, wn,an).
Then for the left and right triangles in ℓ(v1,1, wn,an) with vertices v1,1 and wn,an we have

λ(vi,j , wk,l) =

{
K(ai + 1− j, ai+1, . . . , ak−1, ak), k ∈ {n− 1, n− 2},
K(ai + 1− j, ai+1, . . . , ak−1, l), k = n.

Theorem 3.80. (Generalised Ptolemy relation.) Let V and W be nice triangles such that
the slices between each pair of vertices, one from V and one from W , contain at least one
tetrahedron. Then we have

P (V,W ) =

{
1, if V is a right triangle,

0, if V is a left triangle.

Proof. Let us first consider the case P (△R,△R). Assume that the exponential form of the LR
sequence for the polyhedron defined by the two triangles is (a1, . . . , an), so the determinant
matrix of λ-lengths is

P (△R,△R) =

 K(a3, . . . , an) K(a3, . . . , an − 1) K(a3, . . . , an−1)
K(a1, . . . , an) K(a1, . . . , an − 1) K(a1, . . . , an−1)

K(a1 − 1, . . . , an) K(a1 − 1, . . . , an − 1) K(a1 − 1, . . . , an−1)

 .

Recall from Proposition 3.65 that the matrix Mn(a1, . . . , an) has determinant 1. We define two
matrices MRow and MCol by

MRow =

0 1 −a1
1 0 0
1 0 −1

 , MCol =

1 1 0
0 −1 1
0 −1 0

 .

Then we have that
P (△R,△R) = MRow ·Mn(a1, . . . , an) ·MCol.
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Since det(MRow) = det(MCol) = 1 we have that det
(
P (△R,△R)

)
= 1. A similar computation

shows that det
(
P (△R,△L)

)
= 1. Consider now the case

P (△L,△R) =

 K(a1, . . . , an) K(a1, . . . , an − 1) K(a1, . . . , an−1)
K(a2, . . . , an) K(a2, . . . , an − 1) K(a2, . . . , an−1)

K(a1 − 1, . . . , an) K(a1 − 1, . . . , an − 1) K(a1 − 1, . . . , an−1)

 .

Using the recursion formula of continuants we see that Row 1 = Row 2 + Row 3, and hence
det

(
P (△L,△R)

)
= 0. Similarly we observe that det

(
P (△L,△L)

)
= 0.

Remark 3.81. It is not clear what happens when there are zero elements.

3.7.3 Frieze pattern in higher dimensions

We conclude this subsection with the following topological definition of frieze pattern in three
dimensions.

Definition 3.82. Consider a Farey polyhedron P and with prismatic diagram D, let V (D) be
the set of vertices of D. Consider the function

λ : V (D)× V (D) → Z,

whose values on two vertices is the λ-length between the corresponding vertices in the Farey
polyhedron. We call the collection (∂D× ∂D, λ) the frieze pattern associated to the given Farey
polyhedron.

Remark 3.83. In the two-dimensional case this definition will coincide with the classical one once
we replace ∂D with its universal covering. In higher dimensional case we propose to follow the
diagram ∂D itself for the sake of transparency.

As we have discussed above the frieze pattern satisfies the Ptolemy relation for pairs of faces
in the prismatic diagram. Let us illustrate this by the following example.

Example 3.84. Consider a continued fraction

[3; 1 : 2 : 1 : 2 : 3 : 3 : 1]

with marked faces V = v2,1v2,2v1,4 and W = v7,2v7,3v5,3 as in Figure 6. The geodesic ℓ(V,W )
has exponential LR sequence (1, 2, 1, 2, 3, 2). The pairwise vertices are as follows

P (V,W ) =

 K(a1, . . . , an) K(a1, . . . , an−2) K(a1, . . . , an − 1)
K(a1 − 1, . . . , an) K(a1 − 1, . . . , an−2) K(a1 − 1, . . . , an − 1)
K(a3, . . . , an) K(a3, . . . , an−2) K(a3, . . . , an − 1)


=

K(1, 2, 1, 2, 3, 2) K(1, 2, 1, 2) K(1, 2, 1, 2, 3, 1)
K(0, 2, 1, 2, 3, 2) K(0, 2, 1, 2) K(0, 2, 1, 2, 3, 1)
K(1, 2, 3, 2) K(1, 2) K(1, 2, 3, 1)


=

218 21 112
105 10 54
41 4 21

 .

In particular detP (V,W ) = 1.

Remark 3.85. Informally speaking there is a certain similarity between the structure of multidi-
mensional frieze patterns and Voronoi continued fractions introduced in [50]: here one constructs
a special polyhedron and writes elementary matrix transitions between its faces. The construc-
tion of the Voronoi polyhedra are substantially different. The question of establishing the link
between Voronoi continued fractions and multidimensional frieze patterns is open.

38



M1

M3

M2

v1,1

v2,1

v1,2 v1,3 v7,2 v7,3 v7,4

v6,2

v6,3

v6,4

v2,2

v5,1
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v8,2

M1

M3

M2

v1,1
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v1,2 v1,3 v1,4
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v4,2
v7,1

v7,2 v7,3 v7,4

v3,2 v3,3
v6,1

v6,3

v6,4

v8,2

Figure 6: Prismatic diagram for [3; 1 : 2 : 1 : 2 : 3 : 3 : 1].

4 Suggestions for further work

We conjecture that the construction in this paper has a natural extension to other subtractive
algorithms and the multidimensional subtractive algorithms as well. From this we propose the
following open problems for further study.

Problem 2. Describe the edge sail duality in the higher dimensional case (n ≥ 4). Here
corresponding tables similar to Table 1 in the three-dimensional case may be built.

Problem 3. What is the analogue of nose stretching for other algorithms. What are their
geometric properties.

Problem 4. Extend the theory of Farey simplices and their sails to other subtractive algorithms.

Problem 5. Compare the properties of different subtractive algorithms and their characteristic
features.

Problem 6. Study the frieze pattern defined by prismatic diagrams in three dimensions and
above.
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